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Abstract
Meteotsunamis pose a unique threat to coastal communities and often lead to damage of 
coastal infrastructure, deluge of nearby property, and loss of life and injury. The Great 
Lakes are a known hot-spot of meteotsunami activity and serve as an important region 
for investigation of essential hydrodynamic processes and model forecast requirements in 
meteotsunami-induced coastal flooding. For this work, we developed an advanced hydro-
dynamic model and evaluate key model attributes and dynamic processes, including: 
(1) coastal model grid resolution and wetting and drying process in low-lying zones, (2) 
coastal infrastructure, including breakwaters and associated submerging and overtopping 
processes, (3) annual/seasonal (ambient) water level change, and (4) wind wave-current 
coupling. Numerical experiments are designed to evaluate the importance of these attrib-
utes to meteotsunami modeling, including a “representative storm” scenario in the context 
of regional climate change in which a meteotsunami wave is generated under high ambient 
lake-level conditions with a preferable wind direction and speed for wind-wave growth. 
Results demonstrate that accurate representation of coastal topography and fully resolving 
associated hydrodynamic processes are critical to forecasting the realistic hazards associ-
ated with meteotsunami events. As most of existing coastal forecast systems generally do 
not resolve many of these features due to insufficient model grid resolution or lack of essen-
tial model attributes, this work shows that calibrating or assessing existing forecast models 
against coastal water level gauges alone may result in underestimating the meteotsunami 
hazard, particularly when gauging stations are sparse and located behind harbor breakwa-
ters or inside estuaries, which represent dampened or otherwise unrepresentative pictures 
of meteotsunami intensity. This work is the first hydrodynamic modeling of meteotsunami-
induced coastal flooding for the Great Lakes, and serves as a template to guide where 
resources may be most beneficial in forecast system development and implementation.
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1 Introduction

The Laurentian Great Lakes are influenced by a variety of mid-latitude weather systems, 
from extratropical cyclones to localized convective storms. Combined with their sea-like 
characteristics, such as the immense sizes, great depths and steep bathymetric gradients, 
the Great Lakes have long been referred to as ‘‘inland seas”, prone to rolling waves, strong 
currents, storm surges and other hydrodynamic hazards. Over the last two decades, the 
Great Lakes water levels have swung from record lows to extreme highs (Gronewold and 
Rood 2019). Higher water levels, along with more intense storms (Feng et al. 2016; Jabbari 
et al. 2021) due to the hydrologic intensification that accompanies climatic warming trends, 
have further exacerbated coastal flooding hazards that endanger boaters, beachgoers, and 
caused more severe damage to coastal infrastructure, communities and ecosystems. Recent 
record-breaking high lake levels in 2020 across the Great Lakes calls for the urgent need 
for a capable modeling framework to predict coastal flooding events and to better prepare 
coastal communities for emergency management and development planning.

While various mechanisms, such as storm surges and seiches, can result in coastal flood-
ing in the Great Lakes and coastal oceans, meteotsunamis are an important phenomenon 
that have caused disastrous damage to coastal property and loss of life due to their signifi-
cant runup and associated strong currents (As‐Salek and Schwab 2004; Šepić et al. 2015; 
Linares et al. 2019; Vilibić et al. 2021). These meteorologically induced water waves are 
similar to seismic tsunamis in spatial and temporal characteristics, limited to the frequency 
band of wave periods between 2 minutes to 2 hours, but are mainly caused by atmospheric 
pressure and wind perturbations associated with fast-moving weather events including 
severe thunderstorms, squalls and storm fronts (Vilibić et  al. 2021). These atmospheric-
disturbance-generated waves are often amplified by different resonance mechanisms such 
as the Proudman resonance, Greenspan resonance, shelf resonance and harbor resonance 
(Monserrat et  al. 2006). Recent studies showed meteotsunami events with heights larger 
than one foot, a potentially dangerous magnitude, occur an average of 106 times per year, 
which is much higher than previous estimates, throughout the Great Lakes region, flooding 
coastal communities and causing dangerous rip currents (Bechle et al. 2016; Linares et al. 
2019).

While early studies (e.g., Edwing et al. 1954; Donn 1959) suggested that meteotsuna-
mis in the Great Lakes were primarily driven by atmospheric pressure perturbations; more 
recent studies identified that, depending on meteorological conditions, both atmospheric 
pressure and wind perturbations can be essential factors to influence meteotsunami mag-
nitudes in the Great Lakes (Bechle and Wu 2014; Linares et al. 2019). Recently, a high-
amplitude pressure-driven meteotsunami occurred on April 13, 2018, when meteotsunami 
waves struck the Michigan coastline near Ludington, Michigan (Anderson and Mann 
2020). Sitting on the east coast of Lake Michigan, the Ludington shoreline is character-
ized by sandy dunes and beaches with shallow nearshore water. The Ludington Harbor 
is protected by two harbor breakwaters open to the west, with maximum water depths of 
approximately 7 m in the harbor. On the shore, the Ludington region has a wide low-lying 
zone with sandy beaches and dunes (elevation lower than 3 m relative to low water datum) 
(Fig.  1). During this event, the harbor breakwaters were overtopped with the incident 
waves, and flood waters inundated the shoreline and nearby city streets. Damage to public 
docks and lakefront cottages were also reported.

Using surface meteorological conditions generated from a Weather Research and Fore-
casting (WRF; Powers et al. 2017) model simulation, Anderson and Mann (2020) examined 
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the performance of the National Oceanic and Atmospheric Administration (NOAA) 
Lake Michigan-Huron Operational Forecast System (LMHOFS; Kelley et  al. 2020), an 
operational forecast model based on Finite Volume Community Ocean Model (FVCOM; 
Chen et al. 2006), in simulating the meteotsunami event. While the simulated results by 
LMHOFS show good agreement with observation in terms of timing of the meteotsunami 
arrival at several coastal locations, the present modeling framework falls short in a few 
important aspects relevant for coastal hazard prediction. First, with the model grid resolu-
tion of roughly 500 m in the shoreline, the LMHOFS model mesh only extends to outside 
of the breakwaters while the nearest water level gauge to Ludington is located inside the 
Ludington estuary (Fig.  2), which makes it infeasible to truly calibrate and validate the 
model’s capability to predict water levels inside the harbor and Ludington estuary. Second, 

Fig. 1  a The bathymetry of Lake Michigan and (b) the detailed topography of the Michigan coast near Lud-
ington, Michigan, relative to low water datum (176.0 m)

Fig. 2  a Model mesh of Ludington-HR, b comparison of model meshes of original LMHOFS and the Lud-
ington-HR in the Ludington region. The green dot indicates the closest model grid to the gauge station 
9,087,023 (red dot). The water level at the green dot was selected to compare with the gauged water level at 
station 9,087,023 in the original LMHOFS in Anderson and Mann (2020)
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the relatively coarse model grid resolution and the lack of inland coverage of the mesh and 
necessary numerical modules for nearshore processes do not permit the model to capture 
critical hydrodynamic details during this meteotsunami event, such as the wave signal into 
the harbor/estuary, the dynamics related to wetting and drying, wave runup, and inland 
inundation conditions. These deficiencies can result in a mischaracterization of meteotsu-
nami intensity and impact, whereby an early warning system could provide incomplete or 
inaccurate description of the coastal hazard. Resolving these deficiencies and understand-
ing the full extent of the meteotsunami impact are integral to developing a robust coastal 
flood forecast system.

In this study, we developed a high-resolution coastal model for the portion of east 
coastal water (86.42°W–86.60°W; 43.64°N–44.08°N) that covers the Ludington region 
(Fig.  2) to resolve coastal structures and coastal topography for accurate simulation of 
nearshore hydrodynamics, including water overtopping the breakwaters, wetting and dry-
ing processes over the low-lying land, and wave-water interactions. Taking advantage of 
the unstructured grid mesh, we integrated the high-resolution coastal model mesh into 
LMHOFS (Hereafter referred to as Ludington-High Resolution or Ludington-HR). In such 
a way, the Ludington-HR model also covers the entire Lake Michigan-Huron (Fig. 2a) as 
LMHOFS, thus providing representation of large-scale background circulation and remote 
forcing that drives Ludington nearshore water movement. This study revisits the 2018 
meteotsunami event using the Ludington-HR and aims to identify and evaluate the required 
model capacities for forecasting dangerous nearshore conditions and flooding potential. 
The remaining sections are organized as follows. The Ludington-HR and the design of the 
numerical experiments are described in Sect. 2. In Sect. 3, the model performance in simu-
lating the meteotsunami event and resulting flooding are presented. Impacts on the flood-
ing of various factors, including model mesh grid resolution, coastal engineering structure, 
water level change, wave-current interaction, and atmospheric pressure perturbation, are 
examined. The conclusions are summarized in Sect. 4.

2  Method

2.1  Hydrodynamic model

Both LMHOFS and the Ludington-HR are developed based on the hydrodynamic model 
FVCOM. FVCOM is a three-dimensional (3D) free surface, primitive-equation model that 
solves the momentum, continuity, temperature, salinity, and density equations and is closed 
physically and mathematically using the 2.5 level turbulence submodel for vertical mix-
ing (Mellor and Yamada 1982) and the Smagorinsky formulation for horizontal diffusion 
(Smagorinsky 1963). FVCOM is solved numerically using the finite volume method in 
the integral form of the primitive equations over a horizontal unstructured triangular grid 
mesh, and the vertical dimension is represented by generalized terrain-following coordi-
nates. The advantage of an unstructured grid for shoreline fitting and the flexibility of local 
mesh refinements makes it popular in applications to coastal waters and Great Lakes, in 
both stand-alone hydrodynamic modeling (Xue et al. 2015; Anderson et al. 2018; Huang 
et al. 2019; Ye et al. 2019 2020) and coupled with other models such as water quality mod-
els (Xue et al. 2014a; Rowe et al. 2017) or regional climate models (Xue et al. 2014b 2017; 
Xue and Eltahir 2015).
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The model mesh and bathymetry of Ludington-HR were developed based on those of 
LMHOFS and include local refinements. Specifically, the LMHOFS has an unstructured 
horizontal grid of 90,806 nodes and 171,377 elements, with horizontal resolution ranging 
from ~ 200 to 500  m near the coast to 2.5  km offshore (Anderson et  al. 2018). In com-
parison, the Ludington-HR refines the original model grid of LMHOFS in the east coast 
around Ludington with a much higher horizontal resolution of 10 m (Fig. 2b), increasing 
the grid elements from 1,880 to 96,916 in the refinement area. The unstructured design 
allows the finer mesh to gradually relax to the LMHOFS grid for the seamless regional 
refinement (Fig. 2a). Vertically, LMHOFS and Ludington-HR share the same 21 uniform, 
terrain-following, sigma layers. In the Ludington-HR model, the bathymetry and topog-
raphy in the Ludington region were updated with data from NOAA Electronic Naviga-
tional Charts (NOAA ENC), (https:// encdi rect. noaa. gov/) that contain high-resolution 
water depth information including inside channels and harbors, and 2012 USACE NCMP 
Topobathy Lidar data: Lake Michigan (https:// coast. noaa. gov/ digit alcoa st/ data/) nearshore 
topography, which has 1  m resolution that is sufficient to resolve the complexity at the 
land–water interface.

In addition to the higher model grid resolution, bathymetry, and shoreline, the Lud-
ington-HR model is configured with two extra modules—the dike–groin module and the 
wetting/drying module—both are critical for accurate coastal inundation simulations. The 
dike–groin module was first developed and introduced by Ge et  al. (2012), enabling the 
Ludington-HR model to represent the breakwaters by allowing water exchange over the 
breakwaters and blocking flow below the submerged structures. Triangular elements were 
generated along a breakwater on both sides. Figure 3a shows a segment of the breakwater 
(red line) and its surrounding model triangular elements. In FVCOM, the scalar variables 
such as water surface elevation (ζ) are designated at the triangle vertices. They are cal-
culated by net flux through the Tracer Control Element (TCE), a section enclosed by the 
surrounding triangle centroids and the middle points of triangle sides (light-blue shaded 
regions). For a breakwater, the TCE is divided into two elements (Fig. 3b), and calculates 

Fig. 3  Sketch of the combination (a) and separation (b) of the tracer control element (TCE) along a break-
water structure. The blue regions indicate the TCEs

https://encdirect.noaa.gov/
https://coast.noaa.gov/digitalcoast/data/
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the fluxes separately for both elements. For the water below the breakwater, the treatment 
is similar to the solid boundary condition, which ensures no flux normal to the wall. When 
the breakwater is temporarily submerged, the fluxes of the elements of the water layer 
above the breakwater are combined to determine the water level and currents. When water 
overtopping occurs with the rising water level on one side of the breakwater (e.g., surges, 
tides, and tsunamis), the total volume of spilled water and associated water levels on both 
sides of the breakwater are calculated under the local and global mass conservation (see Ge 
et al. 2012 for detailed model development and validation).

To simulate the water transport flooding onto and draining out of the low-lying coastal 
zone, the wetting/drying module (Chen et al. 2008) was also enabled. In this method, a vis-
cous sublayer with a thickness  Dmin is used to avoid the occurrence of a singularity when 
the local water depth approaches zero during the wetting and drying process. When the 
model simulated water column at a given triangle node is less than  Dmin = 5 cm, the node 
is treated as dry. Subsequently, for a triangular cell with three nodes i, j, and k; the wet/dry 
condition is determined by the wet/dry conditions of the three nodes using the following 
criteria:

where H(i,j,k) and ζ(i,j,k) are the bathymetry (negative value overland) and the surface 
water elevation at nodes i, j, and k. When a triangular cell is treated as dry, the velocity (u, 
v), which is configured at the centroid of this triangle. (Fig. 3) is specified to be zero and 
no flux is allowed through the three side boundaries of this triangle. This triangular cell is 
then removed from the flux calculation in the TCEs. The wetting/drying treatment has been 
validated for both idealized and realistic estuarine cases with detailed discussion by Chen 
et al. (2008).

Lastly, the complexity of coastal and nearshore hydrodynamics also lies in the fact 
that multiple dominant processes interact with each other and form strong nonlinearity. 
For example, the wave radiation stresses influence nearshore currents and water levels, 
and water level fluctuations also affect wave propagation and dissipation. To account for 
wave contributions to coastal flooding, we dynamically coupled the hydrodynamic model 
FVCOM and the wave spectral model SWAN (Simulating Waves Nearshore).

SWAN is a third-generation spectral wave model developed at Delft University of Tech-
nology that computes random, short-crested wind-generated waves in coastal regions and 
inland waters (http:// swanm odel. sourc eforge. net/). It solves the evolution equation of wave 
action density and accounts for various wave energy sources and sinks, including wave 
generation by wind, wave decay due to white capping, bottom friction, and depth-induced 
wave breaking, as well as energy redistribution through nonlinear wave-wave interactions. 
The model has been recognized as a reliable coastal community wave model which has 
been widely used for wave hindcasting and forecasting in coastal and inland waters (Rogers 
et al. 2003 2007; Niroomandi et al. 2018). In the SWAN wave simulations, the computa-
tional mesh was curvilinear and consisted of 679 × 1073 grid cells, which gave a horizontal 
resolution of 10–20 m around the Ludington region (Fig. 4). The spectral domain was dis-
cretized into 12 directions with 30° intervals and 31 frequency bands from 0.0521 to 1.0. 
The breakwaters were modeled by a subgrid approach in SWAN as line structures, as they 
usually have a transversal area that is too small to be resolved by the model grid. Break-
waters will reduce the wave height of waves propagating through or over the structures and 
cause waves to be reflected. These effects were accounted for in the simulations. The wave 

Triangular cell

{

wet, if D = min(Hi, Hj, Hk) + max(ζi, ζj, ζk) > Dmin

dry, if D = min(Hi, Hj, Hk) + max
(

ζi, ζj, ζk
)

≤ Dmin

http://swanmodel.sourceforge.net/
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transmission coefficient was calculated by the Goda formula (Goda et al. 1967). The reflec-
tion coefficient was set to be a constant of 0.5. Wave diffraction process was activated in 
the simulation.

In the coupled FVCOM-SWAN framework, the OASIS-MCT coupler (Craig et  al. 
2017) is implemented to exchange information between the two models. By doing so, mod-
ifications of the model code structure in each model were minimized and it is also much 
more efficient with respect to keeping model constituents updated to the relatively new ver-
sions (FVCOM4.1 and SWAN v41.01). In the coupled system, FVCOM and SWAN are 
integrated forward simultaneously, and the coupler passes the SWAN-simulated significant 
wave height, mean wave direction, mean wavelength, and peak wave period to FVCOM to 
calculate the radiation stress for resolving the wave-induced momentum. The coupler 
passes the FVCOM simulated free surface elevation and currents to the SWAN for the 
instantaneous water depth and relative wind speed for wave calculation. Also, in the hydro-
dynamic stand-alone simulations, the bottom stresses (�bx, �by) are calculated from a quad-
ratic expression

(

�bx, �by
)

= Cd

√

u2
b
+ v2

b
(ub,vb) , where ( ub,vb) are the x and y components 

of bottom current velocities. The drag coefficient Cd is formulated by matching a logarith-
mic bottom boundary layer to the model at a height Zab above the bottom as 
Cd = max(

K2

ln
(

Zab

Z0

) , 0.0025) where K = 0.4 is the von Kármán constant and Z0 is the bottom 

roughness parameter. In the coupled FVCOM-SWAN simulations, turbulent wave-current 
bottom boundary layer (BBL) flows and combined bottom shear stresses due to the pres-
ence of waves and wave-current interactions are calculated with the BBL model proposed 
by Madsen (1994).

2.2  Atmospheric forcing

The Ludington-HR model was spun up from March 1, 2018, initialized from the NOAA 
LMHOFS, and driven by hourly meteorological output from High-Resolution Rapid Refresh 
(HRRR). The Ludington-HR simulation during the meteotsunami event on April 13, 2018, 
was driven by surface meteorological forcing from a WRF simulation with 7-km grid spacing 
and a two-minute output interval to capture the high-frequency variation of the barometric 

Fig. 4  a SWAN model mesh; b a zoom-in view in the Ludington region
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pressure gradient during the event, as described in Anderson and Mann (2020). However, 
we found an adjustment of underestimated barometric pressure from the WRF simulation is 
necessary to capture the pressure-driven meteotsunami event as described by the water level 
analysis below.

As shown in Fig. 2, due to the coarse model resolution, Anderson and Mann (2020) had to 
use the water level at the nearest LMHOFS model node (the green dot in Fig. 2) to compare 
with the gauged water level at National Ocean Service (NOS) observation station 9,087,023 
(the red dot in Fig. 2) located far behind harbor breakwaters inside the drowned river mouth 
estuary. This geographic discrepancy makes it impossible to truly verify the LMHOFS perfor-
mance in simulating coastal water levels as well as those inside the estuary and harbor. Notice 
that the gauged water level at station 9,087,023 had a maximum value of 177.1 m (i.e., a 0.3 m 
water level rise relative to the lake level of 176.8 m prior to the event) and LMHOFS pre-
dicted a maximum water level of 177.3 m during the event. It would appear that the LMHOFS 
overestimated the water level rise if not for the geographic difference between the LMHOFS 
model node and gauged location (Fig.  2). In fact, the LMHOFS simulation in Anderson 
and Mann (2020) has underestimated the water level, based on several sources of evidence. 
First, while recorded water level rise were just up to 0.3 m at station 9,087,023, the National 
Weather Service (NWS) office in Grand Rapids received reports of water level fluctuations 
of 2 m recorded just outside of the Ludington harbor, where divers were performing main-
tenance on a water intake at the time of the event. Second, the Lake Level Viewer operated 
by NOAA (https:// coast. noaa. gov/ llv/) provides the relationship of the static water level and 
the coastal inundation in the great lakes (Fig. 5). It shows that at a water level of 177.3 m 
as simulated by LMHOFS, no coastal inundation would occur. Even when the water level 
reaches 177.9 m, the inundation would occur but not be severe enough to flood onto the street, 
as reported for this event and documented with photographic and video evidence. Using the 
Lake Level Viewer, the water level would need to reach 178.2 m in order to create the flood-
ing extent reported from local authorities. This is also consistent with the reported water level 
fluctuations of ~ 2 m outside the harbor.

Using the above water level and inundation analysis, along with the fact that the barometric 
pressure jump generated by the WRF simulation (dotted red line, Fig. 6a) is noticeably smaller 
than observation (black line, Fig.  6a), we assume the underestimated water level from the 
LMHOFS simulation in Anderson and Mann (2020) is due to an underestimated atmospheric 
pressure in the meteorological forcing (Fig. 6). From the atmospheric perspective, the under-
estimation of the atmospheric pressure jump in this high-amplitude pressure-driven meteotsu-
nami event was the main reason that was responsible for underestimated magnitudes of mete-
otsunami waves traveling in the lake, which would not be able to induce coastal flooding as 
opposed to the actual condition. The purpose of this study is to, from the perspective of lake 
hydrodynamic processes and modeling, identify those critical hydrodynamic model attributes 
that are essential to resolve meteotsunami-induced flooding. Therefore, an adjustment of the 
atmospheric pressure was made as follows,

where Pt
i
 is the atmospheric pressure at model grid, time t , and Pt

i
 is the tempo-

ral mean of Pt
i
 during the time 12:00–16:30 (GMT). Hence, ΔPt

i
 is the tempo-

ral variation of Pt
i
 relative to its meanPt

i
 . The variation of the adjusted pressure 

ΔPt
i
= (Pt

i
− Pt

i
), i = 1,2, 3,… ,N

APt
i
=
(

ΔPt
i
∗ AF

)

+ Pt
i
, i = 1,2, 3,… ,N

https://coast.noaa.gov/llv/
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APt
i
is amplifed by a factor of AF(= 2.9) so that the atmospheric pressure jump is 

elevated to the observed magnitude (blue line, Fig. 6a). The original and amplified (here-
after referred to as AP1 and AP2) spatial patterns of atmospheric pressure are shown in 
Fig. 6b, c, both show the traveling atmospheric inertia–gravity waves. We acknowledge the 
imperfection of this empirical adjustment, yet it serves well for our purpose to stay focused 
on evaluating essential hydrodynamic processes and identifying key hydrodynamic model 
attributes without being diverted to re-develop or recalibrate the atmospheric forecasting 
model, which is an undoubtedly important component in a real forecasting system but far 
beyond the scope of this study.

2.3  Numerical experimental design

To analyze the impacts of model resolution, coastal structure, water level change, wind-
induced waves, and atmospheric pressure perturbation on the event, a control run and six 
process‐oriented numerical experiments were designed. The control run is a hydrodynamic 
stand-alone simulation that incorporates the best hydrodynamic model configuration avail-
able, as described in Sects. 2.1 and 2.2, including the high-resolution model grid, updated 
model bathymetry and topography, enabled dike–groin module and wetting–drying mod-
ule, and adjusted barometric pressure forcing. The breakwaters are configured with a crest 
elevation of 2 m above the low water datum (176 m).

Fig. 5  Time series of water levels measured at station 9,087,023 (red dot in Fig. 2) and the simulated by 
LMHOFS outside the Ludington Harbor (green dot in Fig. 2) (panel a); the coastal inundation map under 
different water levels generated from the NOAA Lake Level Viewer (panel b, c, d)
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The design of four sets of experiments is briefly summarized below for an overview. 
Further elaboration on the design of each case are presented in Sects. 3.2, 3.3 and 3.4:

1. Impact of breakwaters: case (BW0) was configured the same as the control run but 
without the breakwaters; case (BW1) was configured the same as the control run but 
with increased crest elevation to 3 m above the low water datum (176 m).

2. Impact of lake level: case (LL) was configured as the same as the control run, but the 
lake mean lake level was increased from 176.8 m in the control run to 177.6 m, repre-
senting the high water level observed in 2020 and serving as a sensitivity analysis of 
the inundation to natural lake level variation.

3. Impact of wind-induced waves: the wave-current coupled run (WC) is the case that 
dynamically couples the hydrodynamic simulation of control run (including breakwa-
ters) with SWAN (including breakwaters).

4. A “representative storm” scenario: it integrates the meteotsunami, high water level, as 
well as favorable wind for wind-wave development along the east coast. Two cases were 
configured without (RS1) and with (RS2) wave-current coupling. Both were tested with 
the idealized southwesterly wind to favor the wind-induced wave growth around the east 
coast combining with the high water level observed in 2020 as in the case LL.

A summary of the configuration of these experiments is presented in Table 1.

Fig. 6  Time series of barometric pressure measured at station 9,087,023 (red dot in Fig. 2) and the WRF 
simulated barometric pressure (original: red dotted; amplified: blue) (panel a); the original (panel b) and 
amplified (panel c) spatial patterns of barometric pressure during the maximum water level rise
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3  Results and discussion

3.1  Evaluation of simulated coastal flooding

The coastal flooding area simulated by the Ludington-LR model shows a close agreement 
with the reported flooding area. While no news reports or observed flood extent maps exist, 
videos of the meteotsunami event that were posted on social media were able to capture 
major flooded areas. Figure 7a shows the model simulated maximum flood extent around 
the Ludington north breakwater entrance, which is highly consistent with video snapshots 
of the flood water by local photographers (Fig.  7b–d). Both model results and recorded 
video snapshots show that the southern beach of Ludington Stearns Park was severely 
flooded with rising lake level (Fig. 7c) and the flood waters inundated the streets near West 
Ludington Avenue (Fig.  7d). This corroborated with an account from a local photogra-
pher that reported, “Water was also flooding the beach and the end of Ludington Avenue” 
(https:// www. mlive. com/ news/ 2018/ 04/ lake_ michi gan_ pier_ compl etely. html). The model 
simulation also successfully captured the flood waters that intruded around the local high-
land to the lighthouse pier entrance west of Ludington Skate Park (Fig. 7b). Furthermore, 
the model predicted flooding areas correspond quite well with the coastal inundation map 
generated from the NOAA Lake Level Viewer under the condition when the water level 
rises to 178.2  m (Fig.  5d). In fact, the model predicted maximum water level rise was 
around 178.1–178.3 m across this region (e.g., Figs. 9 and 10).

The meteotsunami waves during this event were observed with wave periods between 18 
and 24 min based on the observed water level fluctuations at nearby coastal gauge stations 
(Anderson and Mann 2020), which led to rapid water level changes that caused the Lud-
ington breakwaters to be submerged and re-emerged in a short time period of 10 min. The 
most widely reported information about the Ludington meteotsunami on April 13, 2018 is 
a set of two photos of the Ludington North Breakwater (Fig. 8a, b), which show how the 
rise in lake level from the meteotsunami wave completely covered the north breakwater 
and retreated below the structure again approximately 10 min later. The same phenomenon 
was captured by the Ludington-HR model (Fig. 8c, d), demonstrating the model’s ability to 
simulate overtopping on coastal structures in both magnitude and phase.

The Ludington-HR resolves local morphological features such as the Ludington Harbor, 
the river channel, the connecting Pere Marquette Lake, and the drowned river mouth estu-
ary where the gauge station is located. Hence, the model was able to reproduce the realistic 

Table 1  Summary of the configurations of numerical experiments

Run Breakwater Initial water level Wave-current 
coupling

Dominant 
wind direc-
tion

Control run Yes (2 m) 176.8 m No NE
BW0 No 176.8 m No NE
BW1 Yes (3 m) 176.8 m No NE
LL Yes (2 m) 177.6 m No NE
WC Yes (2 m) 176.8 m Yes NE
RS1 Yes (2 m) 177.6 m No SW
RS2 Yes (2 m) 177.6 m Yes SW

https://www.mlive.com/news/2018/04/lake_michigan_pier_completely.html
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Fig. 7  Comparison of flood extent during the April 13, 2018, meteotsunami event in Ludington, MI 
between (a) model simulation, and video snapshots of observed flooding (courtesy of Debbie Maglothin 
and Jackie Steckel) at (b) lighthouse pier entrance west of Ludington Skate Park, c Sterns Park South 
Beach, and (d) West Ludington Avenue

Fig. 8  Comparison of Ludington North Breakwater taken just 10 min apart on Friday, April 13 (a and b), 
courtesy of Todd and Brad Reed Photography; and model simulated water level at the two breakwaters 
when the largest one of meteotsunami waves hit the Ludington harbor (c) and 10 min later in GMT (d), the 
red dot marker indicates the location of lighthouse. Notice the photos were taken from the shoreline while 
the model results are presented from the viewpoint that mimics an aerial photograph over the Lake
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Fig. 9  Time series of water levels measured at station 9,087,023 (red line) and simulated by the Ludington-
HR model at the station (black line) and outside the Ludington Harbor (blue line, the green dot in Fig. 2)

Fig. 10  Water level change (contour) and water fluxes per unit length (arrows) in the cases of BW0 (left 
panels), control run (middle panels), and BW1(right panels). Note that case BW0 has no breakwaters, and 
the original breakwater locations were marked in red in left panels. Water flux per unit length is calculated 
as vertically averaged velocity times local water depth  (m2/s)
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differences in water level fluctuation between the gauged station, which is far inside the 
harbor, and the water level outside of the harbor in Lake Michigan. Outside of the Luding-
ton Harbor, the model simulated a peak water level of 178.1 m (Fig. 9, blue line), which 
is considerably higher than the original LMHOFS predicted high water level of 177.3 m 
(Fig.  5a). Meanwhile, the model reproduces the much smaller water level fluctuation at 
the gauge location, where the peak water level only reached 177.2 m as a result of energy 
dissipation in the shallow estuary. This again highlights the limitations and potential mis-
characterization of the meteotsunami hazard if an early warning system fails to adequately 
resolve the coastal topography and nearshore dynamics.

3.2  Impact of breakwaters

The Ludington Harbor is protected by two converging breakwaters (Fig. 2b). The north and 
south breakwaters have a length of roughly 549 m and 518 m respectively, and create a har-
bor entrance that is approximately 168 m wide (https:// www. lre. usace. army. mil/ Missi ons/ 
Operations/Ludington-Harbor-MI/). These two breakwaters were constructed to protect the 
wind-induced waves (see Sect. 3.4 and Fig. 14) and sediment deposition into the harbor 
and to maintain the depth and width of the river channel for boating. The meteotsunami 
waves caused the water level to rise in 10 min on a regional scale of 50–80 km along the 
east coast of Lake Michigan. As meteotsunami wave periods are much longer than those of 
the wind-induced waves, the breakwaters provide limited protection from meteotsunami-
induced coastal inundation (Fig. 10), and in some cases, enclosed harbors can even serve 
to amplify the meteotsunami wave height. A barotropic pressure gradient force due to a 
water level difference drove the water to deluge the Ludington Harbor through the harbor 
entrance and through overtopping of the breakwaters.

Case BW0, which is configured the same as the control run only with the breakwaters 
removed, was designed to examine the impact of the existence of the breakwaters on the 
meteotsunami-induced coastal inundation. We focused on the comparison of water trans-
port, water level rise and flooding when the largest meteotsunami wave (the second wave) 
hit Ludington that resulted in flooding and submerged breakwaters between 16:10 and 
16:40 (GMT) with and without the breakwaters (Fig.  10). While water levels started to 
rise at 16:10 (GMT) in all cases (Fig. 11a) during the 16:10–16:20 (GMT), the impact of 
breakwaters on slowing down the water rise inside the harbor is noticeable (Fig. 10a1,2,3). 
With the breakwaters present, the water level inside the harbor was between 177.1 and 
177.2 m, while outside the harbor the water level reached 177.4 at 16:16 (GMT) and flood-
ing occurred along the south beach. The water level further increased to 177.9–178.0 m 
outside the harbor at 16:18 (GMT), but overtopping had not yet occurred in the cases 
with breakwaters included. The water level inside the harbor also continued increasing 
to 177.6–177.7 m and began to flood the nearshore streets (Fig. 10b1,2,3). At this point in 
time, without the breakwaters (BW0), the water level inside the harbor would be 10–20 cm 
higher and would be similar to levels outside the harbor (Fig. 10c1,2,3). At 16:20 (GMT), 
the water level outside the harbor reached its maximum of 178.1–178.3 m, resulting in a 
strong water level gradient that increased transport into the harbor and caused overtopping 
in the control run, reaching a peak level of 178.1–178.2 m for the inner harbor (Fig. 10c1,2). 
In both the BW0 and control cases, flooding extent reached W. Ludington Ave, though 
the breakwaters had the effect of inducing a strong transport in the northeast corner of the 

https://www.lre.usace.army.mil/Missions/
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Fig. 11  Time series of averaged water level inside the Ludington Harbor in the control run, BW0 and BW1 
run (a); time series of water transport through the opening between the breakwaters, overtopping, and 
through the channel (the connection waterway through which water flows into and out of Pere Market Lake) 
in the control run (b) and BW1 run (c) and BW0 run (d). Positive values represent water transport into Lud-
ington Harbor
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harbor, which set up a higher water level near the breakwater and slightly increased flood-
ing (Fig. 10d1,2).

The vertically integrated water transport is the driving mechanism responsible for water 
level change over a region. Results from case BW1 show that increasing the breakwater 
crest elevation to 3 m above the low water datum of 176 m would significantly reduce over-
topping (Fig. 10c3 and green lines in Fig. 11b, c) yet enhance the water transport through 
the opening due to the higher water setup outside the harbor. As a result, net water trans-
port into the harbor is similar in the control run and BW1 case (black lines in Fig. 11b, 
c), and the water level rise and flooding extent is only slightly reduced in the BW1 case 
(Figs.  11a, 10d2,3). On closer look, the water level started to rise at 16:08 (GMT) with 
the largest meteotsunami wave, which came after two prior, smaller meteotsunami waves. 
Consequently, the net transport (i.e., the water transport into the Harbor through the break-
water opening and overtopping minus the transport out of the harbor into Pere Marquette 
Lake through the channel) to Ludington Harbor turned to positive and the water level in the 
harbor continued to rise, reaching a peak water level at 16:22 (GMT). Thereafter, the water 
level decreased to its low level at 16:36 (GMT). In the control run, the net water transport 
was between 16:08 and 16:22 is 8.5027e + 05  m3 (including 2.0913e + 05  m3 overtopping, 
accounting for 24.5% of net transport). In the case BW1, while the overtopping is signifi-
cantly reduced, the net water transport through the opening is 7.5475e + 05  m3 (including 
0.2740e + 05  m3 overtopping, accounting for 3.6% of net transport), which is 11% smaller 
than that in control run. Similarly, the general patterns of net transport were similar (black 
lines in Fig. 11b–d) in the cases with and without the breakwaters.

3.3  Impact of lake level

Water levels in the Great Lakes have been characterized by significant fluctuations on 
decadal, interannual and seasonal scales. The primary drivers of water levels in the Great 
Lakes are runoff, over-lake precipitation, and evaporation; collectively called the net basin 
supply (NBS). The Lake Michigan level declined from a relatively higher water level of 
177.2 m in 1997 to a level below the long-term mean in 1999 and remained low until 2014 
(as low as 175.57 m in 2013). However, the water level has increased rapidly since then. 
Over just six years, the lake water level has risen by ~ 2 m (Fig. 12a). In 2020, water level 
broke the monthly record high from January through August (Fig.  12b). Recent studies 
suggest that the water level rise was caused by the combination of increased precipitation 
and decreased lake evaporation since 2013–2014 (Gronewold et  al. 2021). Regional cli-
mate projections suggest the trend of rising water may continue into the future (Notaro 
et al. 2015; Kayastha et al. 2021).

Case LL was designed as a “likely scenario” to examine the vulnerability of the region 
to natural lake level variation. The LL case assumes the same meteotsunami to occur at a 
high water level of 177.6 m, which is 0.8 m higher than the water level in April 2018, when 
the meteotsunami occurred. Such a water level is roughly 15 cm higher than the highest 
monthly mean water level in 2020, and equivalent to a high water level observed in south-
east Lake Michigan near Chikaming Township on September 17, 2020. Results in case 
LL show that the flooding would exacerbate significantly if the event were occurring at 
a higher mean lake water level. Not only the W. Ludington Ave, but several streets to the 
south would also suffer from severe flooding (Fig. 13). In addition, the beach protected by 
the south breakwaters would also be flooded. Compared to the control run, the increased 
lake level in case LL changes the water transport pathways. The majority of the water 
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transport would be through both overtopping and the breakwaters’ opening. In fact, trans-
port through the opening would decrease by ~ 41%, while that through overtopping would 
increase by ~ 48%.

3.4  Impact of storminess

In order to assess coastal flooding potential under possible extreme conditions in the con-
text of climate change, we designed a “representative storm” scenario that considers the 
combined threats of meteotsunami and wind waves during a high lake level. In coastal 
regions, wave-current interactions are likely to have significant impacts on coastal flood-
ing during storm events. Waves not only enhance coastal flooding through wave runup and 
overtopping, but also increase mean water level due to wave setup (Olabarrieta et al. 2011). 
In Lake Michigan, climate change in the past decades has caused more severe storms and 
rapidly rising water levels (Wuebbles et al. 2021), which allow large waves to attack the 
shore directly and pose greater threats to coastal systems. During the April 2018 meteot-
sunami event, a northwest wind was dominant over the entire lake, which produced small 

Fig. 12  Observed monthly mean lake wide average water level of Lake Michigan-Huron: long-term series 
(a) and monthly water levels (b)
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Fig. 13  The water flood map simulated in the control run (top), LL case (middle), and the difference in the 
flood area (bottom) at peak water level timestamp
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waves with significant wave height of 0.3–0.4 m (not shown) in Ludington due to the short 
fetch. As a result, the wave-current coupled simulation revealed that wind waves had negli-
gible impacts during the event. However, the “representative storm” scenario assumes the 
same atmospheric pressure forcing as in the control run but in conjunction with a south-
west wind with a peak speed of 20 m/s prevailing over the entire lake. This is the dominant 
wind direction during April and May, when meteotsunamis are most likely to occur in Lake 
Michigan (Bechle et al. 2016).

To study the wave impacts on coastal flooding, we conducted two simulations without 
(RS1) and with (RS2) wave-current coupling. Figure 14 shows the simulated wave height 
distributions in the Ludington Harbor as well as its neighboring coastal regions during the 
meteotsunami event. The 20 m/s southwest wind generates extremely large waves in east-
ern Lake Michigan with significant wave heights over 4 m. At the entrance of the Lud-
ington Harbor, wave heights nearly reach 3 m. Inside the harbor, the wave height is sig-
nificantly reduced to ~ 1.0 m near the shore because of the breakwaters, which protect the 
harbor from direct wind-wave attacks.

The wave impacts on coastal flooding are revealed from the difference in simulated 
water depths from a decoupled hydrodynamic-wave simulation (RS1) and a coupled wave-
current simulation (RS2). The wave setup and setdown are indicated by the difference of 
the water depths from two simulations (Fig.  15). Overall, the waves caused an increase 
in water depth in the nearshore, resulting in more severe coastal flooding. The highest 
wave setup appeared around southern beach at Sterns Park, where the water depth increase 
could be higher than 0.1 m. Inside the harbor, due to smaller wave heights, the wave setup 
was generally lower. The water depth at the flooded streets slightly increased with wave 
impacts.

In addition to wave setup, wave runup on beaches could further increase coastal flood-
ing. The upper limit of the runup, which is the maximum elevation of uprush above the 
still water level, determines the active beach profile and the inundated area. Prediction of 
wave runup requires a phase-resolving model (Ma et  al. 2014) that can simulate nonlin-
ear wave transformation and breaking and is capable of capturing a moving shoreline. The 
SWAN wave model employed in the current study was not aimed to predict wave runup. 
However, wave runup on plane, impermeable beaches could be estimated by the predic-
tive equations proposed by Mase (1989), who found that the maximum runup ( Rm ) was a 
function of surf similarity parameter, given by Rm∕Ho = 2.32�o

0.77 , where Ho is the deep 
water significant wave height, and �o is the surf similarity parameter calculated using the 
deep water wave parameters. For instance, on the northern beach outside of the Ludington 
Harbor, the deep water significant wave height was predicted to be about 2.8 m, peak wave 
period was 7.4 s, and the offshore water depth was about 9.0 m during the “representative 
storm” event. Given the beach slope of 0.03, the maximum wave runup was estimated to be 
1.63 m, which could further exacerbate the inundation.

4  Summary

In this study, we investigate the essential processes that contribute to the coastal hazards 
associated with meteotsunami-induced flooding. During a meteotsunami event, the rapid 
change in water level at the shoreline can lead to damage of coastal infrastructure, del-
uge of nearby property, and induction of dangerous currents in the nearshore. Most of the 
existing real-time coastal forecast systems in the world do not resolve these components, 



1712 Natural Hazards (2022) 110:1693–1718

1 3

Fig. 14  Simulated significant wave heights in the east coast of Lake Michigan (a) and a zoom-in view of 
significant wave heights and wave directions in Ludington Harbor and surrounding region (b) in the RS2 
run
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and thus the true scale of the hazards associated with meteotsunamis are not represented. 
Therefore, as meteotsunami forecasting is still in its early development, or non-existent in 
most regions of the world, it is critical to understand the modeling requirements for resolv-
ing these processes to develop robust forecast systems (Angove et al. 2021; Vilibić et al. 
2021).

The Great Lakes are a known hot-spot of meteotsunami activity (Bechle et  al. 2016; 
Vilibić et al. 2021), yet there is currently no available forecast system or detection system in 
place for meteotsunami conditions. As such, the Great Lakes serve as an important region 
for investigation of essential processes in meteotsunami flooding and forecast requirements. 
For this work, we evaluate four key hydrodynamic model attributes: (1) coastal model grid 
resolution and wetting and drying process in low-lying zones, (2) coastal infrastructure, 
including breakwaters and associated submerging and overtopping processes, (3) annual/
seasonal (ambient) water level change, and (4) wind wave-current coupling. A series of 
sensitivity analyses are carried out to evaluate the importance of these attributes to mete-
otsunami modeling, including a “representative storm” scenario in which a meteotsunami 

Fig. 15  Water level change (contour) in the RS1 case (left), RS2 case (middle), and their difference (RS2-
RS1)
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wave is generated under high ambient lake-level conditions with a preferable wind direc-
tion and speed for wind-wave growth. These results are placed in context with an existing 
forecast model used for hydrodynamic prediction in Lake Michigan.

In comparison to the existing Lake Michigan-Huron Operational Forecast System 
(LMHOFS), a high-resolution version of the model grid that incorporates breakwaters 
and shoreline topography (Ludington-HR) yields an improved water level simulation as 
measured against observations at the nearby Ludington water level gauge. Furthermore, 
the Ludington-HR model resolves coastal flooding into nearby beaches and city streets that 
agrees with eyewitness reports as well as photographs and video taken during the event. 
Although the harbor breakwaters add increased numerical complexity, our results show 
that they modulate the wave amplitude and exacerbate coastal flooding, particularly when 
overtopping occurs. In fact, overtopping itself is often a primary contributor to meteotsu-
nami fatalities, and thus is critical to hazard assessment. The results of the Ludington-HR 
control case show breakwater overtopping that is corroborated by photographs of the event 
(Fig. 8a).

While ocean coasts face sea level rise, the Great Lakes undergo large scale interannual 
and seasonal lake level fluctuations on the order of 1–2 m. In contrast to tidal fluctuations, 
the persistence of ambient lake level conditions can impact an entire meteotsunami season 
(April–July) or multiple years. Connections between ambient lake level and other hazards 
like coastal erosion have been documented; however, the link between lake level and mete-
otsunami impact has not been previously explored. The results in the LL case show that 
high ambient lake-level conditions exacerbate flooding extent into the coast and breakwa-
ter overtopping. The increased overtopping of the harbor breakwaters also yields a sig-
nificant shift in water transport pathways into the harbor, where flow over the breakwaters 
increased by 48% and flow through the harbor entrance decreased by 41%, as compared to 
the control case.

The impact of wave-current interaction in the nearshore is critical to characterizing 
beach hazards and coastal flooding. Previous studies have demonstrated the link between 
wave conditions and dangerous currents during a meteotsunami event (Linares, et al. 2019). 
Here, we show how wave-current interaction impacts coastal flooding using results from 
a “representative storm” scenario that has favorable wind direction and speed for wind-
wave growth during a meteotsunami event. The coupled wave-current simulation reveals 
that while flooding extent into the nearshore is only slightly greater in the coupled case, 
the intensity or depth of flooded waters increases by up to 0.2 m, which can be important 
to property damage and material transport in flooded areas. In addition, wave runup can 
further exacerbate the inundation.

Finally, we note that these four key model attributes we discussed above are from the 
perspective of lake hydrodynamic processes and modeling. Another critical factor in pre-
dicting meteotsunami-induced flooding is the accuracy of meteorological forcing, which 
comes to play from the atmospheric perspective. In this meteotsunami event, the adjust-
ment of atmospheric pressure plays a fundamental role in improving the simulation of the 
magnitude of meteotsunami waves. In this study, our focus is to evaluate essential hydro-
dynamic processes and identify key hydrodynamic model attributes. However, it must be 
noted that the effort must also be dedicated to improving the atmosphere modeling accu-
racy, in addition to advancing hydrodynamic model attributes and features, to enhance the 
capability of real-time forecasting systems.

Overall, this study uses a numerical modeling approach to evaluate physical processes 
that are essential to characterizing shoreline meteotsunami impacts. These results demon-
strate that accurate representation of coastal infrastructure and topography, ambient water 
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level conditions, and wind-wave conditions can be critical to forecasting the realistic haz-
ards associated with meteotsunami events. This work shows that calibrating or assessing 
existing forecast models against coastal water level gauges alone may result in underesti-
mating the meteotsunami hazard, as gauged levels can represent dampened or otherwise 
unrepresentative pictures of meteotsunami intensity, particularly when gauging stations 
are sparse and located behind harbor breakwaters or inside estuaries. Creating such high-
resolution modeling systems for real-time applications with all these hydrodynamic model 
attributes, particularly along the entire coastline, requires a massive amount of computa-
tional resources that may not be feasible in the near-term model development. A poten-
tial alternative is to identify meteotsunami-prone locations for the implementation of the 
before-mentioned high-resolution model system. While existing coastal forecast systems 
generally do not resolve many of these features, this work serves as a template to guide 
where resources may be most beneficial in model development and implementation in con-
cert with the relentless growth in computational power and fast evolution in earth system 
models.
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